
NOVEL OXIDIZING PROPERTIES OF p-METHOXYBENZENETELLURINIC ACID ANHYDRIDE¹⁾

Nan Xing Hu, Yoshio Aso, Tetsuo Otsubo, and Fumio Ogura* Department of Applied Chemistry, Faculty of Engineering, Hiroshima University, Saijo, Higashi-Hiroshima 724, Japan

Abstract: The title compound has proved to be a mild oxidizing agent like the corresponding telluroxide or tellurone towards thiol, phosphine, thioamide, thiourea, thionoester, and benzylic alcohol. In addition, it serves as a selective catalyst for the hydration of terminal alkyne.

Although organotellurinic acid anhydrides have been known since many years ago, their chemical properties have been little investigated.²⁾ They are expected to have a potential oxidizing ability like organotelluroxide³⁾ and tellurone⁴⁾ due to their similar labile Te-O bonds. Very recently Barton et al. reported that aryltellurinic acid anhydrides were mild oxidizing agents towards thiols, hydroquinones, and xanthates.⁵⁾ In addition, Sonoda et al. presented that benzenetellurinic acid anhydride induced acetoxylation of olefins and ketones with acetic acid.⁶⁾ These reports prompt us to report our independent study on the reactivity of p-methoxybenzenetellurinic acid anhydride 1, which is similar in many respects to that of the corresponding diaryl telluroxide 2 or tellurone 3.

p-Methoxybenzenetellurinic acid anhydride <u>1</u> is readily accessible by treatment of anisole with tellurium tetrachloride,⁷⁾ followed by alkaline hydrolysis of the resulting p-methoxyphenyltellurium trichloride.²⁾ It is insoluble in usual solvents except acetic acid, but as an oxidation with it proceeds, it is reduced to readily soluble bis(p-methoxyphenyl)ditelluride. As shown in Table 1, <u>1</u> like telluroxide $2^{3,8}$ smoothly reacted with thiol, phosphine, thioamide, and thionoester to give disulfide, phosphine oxide, nitrile, and ester, respectively (Runs 1-6), though the last reaction required somewhat severe conditions. In addition, <u>1</u> effected the conversion of N,N'diphenylthiourea into N,N'-diphenylcarbodimide (Run 7), in contrast to the reaction with telluroxide <u>2</u> leading to N,N'-diphenylurea. Diaryltelluroxide <u>2</u> does not react with simple alcohols, but diaryltellurone <u>3</u> is capable of oxidizing benzylic alcohols to the corresponding carbonyl compounds.⁴ Such transformations could also be carried out using <u>1</u> (Runs 8-11).

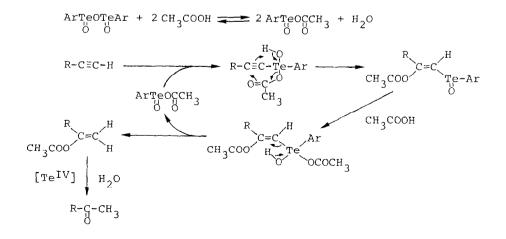

6100		

Table 1. Oxidative reactions with p-methoxybenzenetellurinic acid anhydride 1

Run	Substrate	Solvent	Temp	Time/h	Product	Yield/%
1	p-H ₂ NC ₆ H ₄ SH	CH ₂ Cl ₂	RT	0.16	(p-H ₂ NC ₆ H ₄ S) ₂	95
2	Ph ₃ P	CH ₂ Cl ₂	RT	24	Ph ₃ PO	92
3	PhCSNH ₂	CH ₂ Cl ₂	RT	0.5	PhCN	95
4	p-CIC ₆ H ₄ CSNH ₂	CH ₂ Cl ₂	RT	0.5	p-ClC ₆ H ₄ CN	91
5	Ph2NCSNH2	AcOH	RT	24	Ph2NCN	63
6	PhCSOCH3	снсі3	Reflux	24	PhCOOCH ₃	60
7	PhNHCSNHPh	CH2C12	\mathbf{RT}	1	PhN=C=NPh	89
8	p-02NC6H4CH2OH	Toluene	Reflux	24	p-02 ^{NC6H4} CHO	94
9	р-СН ₃ ОС ₆ Н ₄ СН ₂ ОН	Xylene	Reflux	22	р-сн ₃ ос ₆ н ₄ сно	91
10	PhCH (OH) COPh	Toluene	Reflux	0.16	PhCOCOPh	95
11	сн ₃ сн (он) соосн ₃	Neat	130°C	1	сн _з сосоосн _з	90

Another useful reaction of 1 has been discovered towards alkynes. Tellurinic acid anhydride 1 was usually inert to non-terminal alkynes except for the conversion of diphenylacetylene into benzil with the aid of sulfuric acid. On the other hand, 1 catalyzed the hydration of terminal alkynes in acetic acid at reflux. Some results are shown in Table 2. It should be noted that 1,6-undecadiyne suffered the selective hydration of only the terminal acetylene (Run 4). Thus, the present method nicely complements the conventional hydration method using a mercuric catalyst which is applicable to both terminal and non-terminal acetylenes.

A reasonable mechanism for the hydration of terminal alkyne with 1 is proposed as below.

Table 2.	Reactions of alkynes with 10 mol% of p-methoxybenzenetellurinic
	acid anhydride l in acetic acid at reflux ^a

Run	Substrate	Product	Yield/%
1	PhCECH	PhCOCH ₃	89
2	n-C ₆ H ₁₃ C≡CH	n-C6H13COCH3	90
3	HC≡C(CH ₂) ₆ C≡CH	сн ₃ со(сн ₂) ₆ сосн ₃	91
4	$n-C_4H_9C \equiv C(CH_2)_3C \equiv CH$	$n-C_4H_9C\equiv C(CH_2)_3COCH_3$	85
5	HO CECH	HO COCH3	93
6	OH C≡CH	COCH ₃	58 32
7	n-C ₆ H ₁₃ C≡CCH ₃	No reaction	
8	PhC=CCH ₃	No reaction	
9	PhC=CPh	No reaction	
10	PhC=CPh ^b	PhCOCOPh	61

a) Reaction time 20 h.

b) Equimolar amount of 1 and catalytic amount of sulfuric acid were used.

Typical experimental procedures using p-methoxybenzenetellurinic acid anhydride l are exemplified as follows.

A general procedure of oxidation: Thiobenzamide (0.15 g, 1.09 mmol) was mixed with p-methoxybenzenetellurinic acid anhydride 1 (0.189 g, 0.356 mmol) in 4 ml of dry dichloromethane. The suspension was stirred at room temperature in a nitrogen atmosphere and became clear in 0.5 h. After the solvent was evaporated under a reduced pressure, benzonitrile was separated from the product mixture by bulb-to-bulb distillation at bp 122-123°C/100 mmHg, yield 0.107 g (95%). Column chromatography of the residue on silica gel using benzene as eluent gave red crystals of bis(p-methoxyphenyl)ditelluride, 0.152 g. A general procedure of hydration: A mixture of phenylacetylene (0.153 g, 1.5 mmol) and p-methoxybenzenetellurinic acid anhydride 1 (0.08 g, 0.15 mmol) in 4 ml of acetic acid was stirred at reflux for 20 h in a nitrogen atmosphere. After the solvent was evaporated under a reduced pressure, 10 ml of ether was added, and the ethereal solution was washed with 5% aq. sodium bicarbonate, After concentration of the solution, and dried on anhydrous magnesium sulfate. column chromatography of the residue on silica gel using benzene as eluent gave a colorless oil of acetophenone, yield 0.161 g (89%).

Acknowledgement: The authors wish to express their thanks to the Nitto Chemical Industry Co., Ltd. for the financial aid.

References

6102

- Organotelluriums Part VII. Part VI; K. Sasaki, Y. Aso, T. Otsubo, and F. Ogura, Chem. Lett., 977 (1986).
- 2) N. Petragnani and G. Vicentini, Univ. Sao Paulo, Fac. Filosof., Cienc. Letras, Bol. Quim., <u>5</u>, 75 (1959); Chem. Abstr., <u>58</u>. 11256a (1963); G. Vicentini, E. Giesbrecht, and L. R. M. Pitombo, Chem. Ber., <u>92</u>, 40 (1959); P. Thavornynuntikarn and W. R. McWhinnie, J. Organomet. Chem., <u>50</u>, 135 (1973).
- 3) D. H. R. Barton, S. V. Ley, and C. A. Meerholz, J. Chem. Soc., Chem. Commun., 775 (1979); S. V. Ley, C. A. Meerholz, and D. H. R. Barton, Tetrahedron Lett., 21, 1785 (1980); Tetrahedron, 37, Suppl. 1, 213 (1981).
- 4) L. Engman and M. P. Cava, J. Chem. Soc., Chem. Commun., 164 (1982).
- 5) D. H. R. Barton, J. Finct, and M. Thomas, Tetrahedron, 42, 2319 (1986).
- 6) T. Tsukamoto, N. Kambe, N. Miyoshi, S. Murai, and N. Sonoda, Abstracts, 13th Symposium on Organic Sulfur and Phosphorus Chemistry, Hiroshima, January 1985, p. 57.
- 7) G. T. Morgan and R. E. Kellet, J. Chem. Soc., 321 (1926).
- 8) N. X. Hu, Y. Aso, T. Otsubo, and F. Ogura, Bull. Chem. Soc. Jpn., <u>59</u>, 879 (1986).

(Received in Japan 26 August 1986)